

Travis County

Laboratory Number: 627129 Customer Sample ID: 1471 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	110	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**		IIIIIII					0.8 lbs N/1000sqft
Phosphorus	126	(50)	ppm	11111111111			111111111111)	I	0 lbs P2O5/1000sqft
otassium	260	(175)	ppm				11111111111	וווון		0 lbs K20/1000sqft
Calcium	6,549	(180)	ppm	11111111111			111111111111	(11111111111111111111111111111111111111	I	0 lbs Ca/1000sqft
/lagnesium	261	(50)	ppm				111111111111	111111		0 lbs Mg/1000sgft
Sulfur	67	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111	I	0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
-										
CL =Critical level is the point w	ubiob no ode	ditional nu	striant (avalue	dina nitrat	o NI 00	dium o	ad aand	LLOtiv (its /)	io rocon	amonded **nnn ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627130 Customer Sample ID: 1472 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	caline					
Conductivity	141	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	13	(50)	ppm	11111111111		l				2.9 lbs P2O5/1000sqft
Potassium	234	(175)	ppm	11111111111			,,,,,,,,,,,,,,,,,	Ш		0 lbs K20/1000sqft
Calcium	14,002	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	456	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	129	(13)	ppm	11111111111				11111111111		0 lbs S/1000sqft
Sodium	28	(-)	ppm	111111						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement				i i						0.00 lbs/1000sqft
-										
CL =Critical level is the point w	thich no ode	ditional nu	itriant (avalue	dina nitrat	o N. oo	dium o	nd oond		io rocor	proceeded **processes//ce

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627131 Customer Sample ID: 1473 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	68	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	90	(50)	ppm		111111111111			1111111111		0 lbs P2O5/1000sqft
Potassium	222	(175)	ppm		ШШШ)I		0 lbs K20/1000sqft
Calcium	16,749	(180)	ppm		111111111111			(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	389	(50)	ppm		111111111111					0 lbs Mg/1000sgft
Sulfur	155	(13)	ppm		11111111111			111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	34	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627132 Customer Sample ID: 1474 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	266	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	26	(-)	ppm**		ШШШ)			0.2 lbs N/1000sqft
Phosphorus	46	(50)	ppm		ШШШ		11111111111			0.3 lbs P2O5/1000sqft
Potassium	521	(175)	ppm		ШШШ)1111111111 <u> </u>		I	0 lbs K20/1000sqft
Calcium	10,071	(180)	ppm		ШШШ				II	0 lbs Ca/1000sqft
Magnesium	453	(50)	ppm		ШШШ				I	0 lbs Mg/1000sgft
Sulfur	113	(13)	ppm		1111111111		,,,,,,,,,,,,,,,			0 lbs S/1000sqft
Sodium	63	(-)	ppm		II					
Iron										
Zinc							· ·			
Manganese							į			
Copper							¦			
Boron							¦			
Limestone Requirement								'		0.00 lbs/1000sqft
CI -Critical lovel is the point w	12-1 1	P.C I .		Para Street		P		. (* *()		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627133 Customer Sample ID: 1475 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	line					
Conductivity	338	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**		IIIIIIIII	IIIIIII				0.3 lbs N/1000sqft
Phosphorus	240	(50)	ppm		111111111		111111111111		IIII	0 lbs P2O5/1000sqft
Potassium	250	(175)	ppm		IIIIIIIII		,,,,,,,,,,,,,,,,,	IIIII		0 lbs K20/1000sqft
Calcium	13,734	(180)	ppm		:		: .			0 lbs Ca/1000sqft
Magnesium	368	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	393	(13)	ppm		111111111					0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
Iron										
Zinc										
Manganese										
Copper										
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
CI =Critical level is the point w	hich no add	ditional nu	itrient (exclud	dina nitrate	-N so	dium ai	nd cond	uctivity)	is recon	nmended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627134
Customer Sample ID: 1476
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
оН	7.7	(6.5)	-	Mod. Alkaline	
Conductivity	317	(-)	umho/cm	None CL* Fertilizer F	Recommended
Nitrate-N	109	(-)	ppm**	0 lbs	N/1000sqft
Phosphorus	291	(50)	ppm		P2O5/1000sqft
Potassium	576	(175)	ppm	0 lbs	K20/1000sqft
Calcium	13,983	(180)	ppm		Ca/1000sqft
Magnesium	427	(50)	ppm	0 lbs	Mg/1000sgft
Sulfur	141	(13)	ppm	0 lbs	S/1000sqft
Sodium	57	(-)	ppm		
Iron					
Zinc				<u> </u>	
Manganese					
Copper					
Boron				<u> </u>	
Limestone Requirement				0.00 lbs	:/1000sqft
				an vitrate NL andium and conductivity) is recommended ***	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627135 Customer Sample ID: 1477 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭΗ	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	87	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	74	(50)	ppm		ШШШ		111111111111)11111		0 lbs P2O5/1000sqft
Potassium	138	(175)	ppm				1111111	! !		0.8 lbs K20/1000sqft
Calcium	12,200	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	420	(50)	ppm		ШШШ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)	l	0 lbs Mg/1000sgft
Sulfur	116	(13)	ppm		111111111111		11111111111	וווווווווווו	1111111	0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
lron								! !		
Zinc								!		
Manganese								i		
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627136
Customer Sample ID: 1478
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	87	(-)	umho/cm	None			Cl			Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	100	(50)	ppm	11111111111				111111111111111111111111111111111111111	l	0 lbs P2O5/1000sqft
Potassium	243	(175)	ppm	11111111111)		0 lbs K20/1000sqft
Calcium	19,607	(180)	ppm	111111111111					II	0 lbs Ca/1000sqft
Magnesium	354	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	196	(13)	ppm	111111111111						0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
ron										
Zinc										
V anganese										
Copper							ľ			
Boron							 			
Limestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the paint w							_		_	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627137 Customer Sample ID: 1479 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	156	(-)	umho/cm	None			Cl	•		Fertilizer Recommended
litrate-N	21	(-)	ppm**			IIIIII				0.4 lbs N/1000sqft
hosphorus	220	(50)	ppm						Ш	0 lbs P2O5/1000sqft
otassium	251	(175)	ppm					11111		0 lbs K20/1000sqft
Calcium	6,931	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	631	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	76	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
Sodium	41	(-)	ppm	11111111						
ron										
linc										
Manganese										
Copper										
Boron							I			
imestone Requirement				· ·						0.00 lbs/1000sqft
•										·
CL =Critical level is the point w	ubiob no ode	ditional n	itriant (avalue	dina nitrat	. N	ماناناه	اممما		io rocon	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627138
Customer Sample ID: 1480
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	108	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	33	(50)	ppm	11111111111			IIII	l I		1.3 lbs P2O5/1000sqft
Potassium	207	(175)	ppm					ול		0 lbs K20/1000sqft
Calcium	13,096	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	262	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	131	(13)	ppm	11111111111				ווווווווווו	111111111	0 lbs S/1000sqft
Sodium	34	(-)	ppm	IIIIIII						
ron								! !		
Zinc								!		
Manganese								i		
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Critical level in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627139 **Customer Sample ID:** Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Η	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	386	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	376	(50)	ppm				111111111111	111111111111111111111111111111111111111	111111	0 lbs P2O5/1000sqft
Potassium	365	(175)	ppm				11111111111	1111111111		0 lbs K20/1000sqft
Calcium	5,287	(180)	ppm				111111111111	IIII		0 lbs Ca/1000sqft
Magnesium	304	(50)	ppm				111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	293	(13)	ppm				11111111111	ווווווווווו	11111111111	0 lbs S/1000sqft
Sodium	41	(-)	ppm	IIIIIIII						
ron										
Zinc								l i		
Manganese										
Copper										
Boron										
Limestone Requirement				·						0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	ditional nu	itrient (exclud	ding nitrat	to-N so	dium a	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627141 Customer Sample ID: 1482 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis .	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	248	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	59	(-)	ppm**	11111111111			11111111111	III		0 lbs N/1000sqft
Phosphorus	497	(50)	ppm	11111111111			11111111111	111111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	463	(175)	ppm						l	0 lbs K20/1000sqft
Calcium	5,678	(180)	ppm	11111111111			11111111111	IIIII		0 lbs Ca/1000sqft
Magnesium	421	(50)	ppm				11111111111		l	0 lbs Mg/1000sgft
Sulfur	110	(13)	ppm	11111111111					IIIIIII	0 lbs S/1000sqft
Sodium	18	(-)	ppm	III						
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627142 Customer Sample ID: 1483 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	142	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		III					0.8 lbs N/1000sqft
Phosphorus	300	(50)	ppm	11111111111			11111111111	111111111111	111111	0 lbs P2O5/1000sqft
otassium	425	(175)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,	I	0 lbs K20/1000sqft
Calcium	4,690	(180)	ppm	11111111111			111111111111	(1111		0 lbs Ca/1000sqft
/lagnesium	343	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	71	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft
*CL =Critical level is the point v	which no add	ditional n	ıtrient (exclu	ding nitrat	e-N so	dium a	nd cond	uctivity)	is recor	mmended **ppm=ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627143 Customer Sample ID: 1484 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.4	(6.5)	-	Slightly	Alkaline					
536	(-)	umho/cm	Slight						Fertilizer Recommended
173	(-)	ppm**				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111		0 lbs N/1000sqft
387	(50)	ppm				11111111111	100000	ШШ	0 lbs P2O5/1000sqft
422	(175)	ppm							0 lbs K20/1000sqft
7,899	(180)	ppm		:		:			0 lbs Ca/1000sqft
700	(50)	ppm		mmi		111111111111		II	0 lbs Mg/1000sgft
190	(13)	ppm		IIIIIIIII		11111111111	111111111111111111111111111111111111111		0 lbs S/1000sqft
65	(-)	ppm	11111111111	III					
									0.00 lbs/1000sqft
	7.4 536 173 387 422 7,899 700 190	7.4 (6.5) 536 (-) 173 (-) 387 (50) 422 (175) 7,899 (180) 700 (50) 190 (13)	7.4 (6.5) - 536 (-) umho/cm 173 (-) ppm** 387 (50) ppm 422 (175) ppm 7,899 (180) ppm 700 (50) ppm 190 (13) ppm	7.4 (6.5) - Slightly 7 536 (-) umho/cm Slight 173 (-) ppm**	7.4 (6.5) - Slightly Alkaline 536 (-) umho/cm Slight 173 (-) ppm**	7.4 (6.5) - Slightly Alkaline 536 (-) umho/cm Slight 173 (-) ppm**	7.4 (6.5) - Slightly Alkaline 536 (-) umho/cm Slight c 173 (-) ppm**	7.4 (6.5) - Slightly Alkaline 536 (-) umho/cm Slight ct. 173 (-) ppm**	7.4 (6.5) - Slightly Alkaline 536 (-) umho/cm Slight cl- 173 (-) ppm**

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627144 Customer Sample ID: 1485 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Alk	aline					_
Conductivity	123	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	11111111111	I					0.9 lbs N/1000sqft
Phosphorus	109	(50)	ppm	11111111111			111111111111)111111111111	II	0 lbs P2O5/1000sqft
Potassium	303	(175)	ppm	11111111111	IIIIIIIIII		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	וווווון		0 lbs K20/1000sqft
Calcium	5,423	(180)	ppm	11111111111			:	. :		0 lbs Ca/1000sqft
Magnesium	676	(50)	ppm	11111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)	II	0 lbs Mg/1000sgft
Sulfur	70	(13)	ppm	11111111111			11111111111)11111111111	Ш	0 lbs S/1000sqft
Sodium	40	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627145 Customer Sample ID: 1486 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	97	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	249	(50)	ppm				11111111111	11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	304	(175)	ppm		111111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111		0 lbs K20/1000sqft
Calcium	9,209	(180)	ppm				:		:	0 lbs Ca/1000sqft
Magnesium	495	(50)	ppm		ШШШ		111111111111		I	0 lbs Mg/1000sgft
Sulfur	103	(13)	ppm		11111111111		11111111111	11111111111	1111111	0 lbs S/1000sqft
Sodium	34	(-)	ppm	IIIIIII						
ron										
Zinc								 		
Manganese										
Copper										
Boron							ı			
Limestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	ditional nu	itrient (exclud	ding nitrat	a-N so	dium a	nd cond	uctivity)	ie recor	mmondod **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627146 Customer Sample ID: 1487 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	66	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	130	(50)	ppm		ШШШ		111111111111111111111111111111111111111	11111111111	II	0 lbs P2O5/1000sqft
Potassium	197	(175)	ppm		111111111111)		0 lbs K20/1000sqft
Calcium	7,862	(180)	ppm			:				0 lbs Ca/1000sqft
Magnesium	487	(50)	ppm					:		0 lbs Mg/1000sgft
Sulfur	85	(13)	ppm		ШШШ			111111111111	Ш	0 lbs S/1000sqft
Sodium	28	(-)	ppm	111111						
ron							l			
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	vhich no add	ditional nu	utrient (exclud	ding nitrat	te-N. so	dium a	nd cond	uctivity)	is recon	nmended. **ppm=ma/ka

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627148
Customer Sample ID: 1488
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	181	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	25	(50)	ppm				l			2 lbs P2O5/1000sqft
Potassium	488	(175)	ppm)11111111111111111111111111111111111111	l	0 lbs K20/1000sqft
Calcium	8,522	(180)	ppm		:				II	0 lbs Ca/1000sqft
Magnesium	305	(50)	ppm					1111111		0 lbs Mg/1000sgft
Sulfur	91	(13)	ppm	11111111111			111111111111	111111111111111111111111111111111111111	IIIIII	0 lbs S/1000sqft
Sodium	44	(-)	ppm	11111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				· ·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627147 Customer Sample ID: 1489 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

8.1 125 14 79 248	(6.5) (-) (-) (50)	- umho/cm ppm**	Mod. Alk None						
14 79	(-)	ppm**							
79						CL			Fertilizer Recommended
	(50)								0.7 lbs N/1000sqft
248		ppm					IIIIIII		0 lbs P2O5/1000sqft
	(175)	ppm		HIIIIIII			Ш		0 lbs K20/1000sqft
11,326	(180)	ppm						II	0 lbs Ca/1000sqft
372	(50)	ppm							0 lbs Mg/1000sgft
107	(13)	ppm				шшш		IIIIIII	0 lbs S/1000sqft
24	(-)	ppm	Ш						
						ľ			
						į			
						i			
						ı			
									0.00 lbs/1000sqft
	11,326 372 107 24	11,326 (180) 372 (50) 107 (13) 24 (-)	11,326 (180) ppm 372 (50) ppm 107 (13) ppm 24 (-) ppm	11,326 (180) ppm					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627096
Customer Sample ID: 1490
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.0	(6.5)	-	Mod. Alk	caline					
119	(-)	umho/cm	None			CI	•		Fertilizer Recommended
6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
51	(50)	ppm	11111111111				l		0 lbs P2O5/1000sqft
289	(175)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111		0 lbs K20/1000sqft
21,992	(180)	ppm							0 lbs Ca/1000sqft
421	(50)	ppm						l	0 lbs Mg/1000sgft
190	(13)	ppm	11111111111						0 lbs S/1000sqft
24	(-)	ppm	Ш						
									0.00 lbs/1000sqft
	8.0 119 6 51 289 21,992 421 190	Results CL* 8.0 (6.5) 119 (-) 6 (-) 51 (50) 289 (175) 21,992 (180) 421 (50) 190 (13)	Results CL* Units 8.0 (6.5) - 119 (-) umho/cm 6 (-) ppm** 51 (50) ppm 289 (175) ppm 21,992 (180) ppm 421 (50) ppm 190 (13) ppm	Results CL* Units ExLow 8.0 (6.5) - Mod. Alf 119 (-) umho/cm None 6 (-) ppm** IIIIII 51 (50) ppm IIIIIIIIIII 289 (175) ppm IIIIIIIIIIII 21,992 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 8.0 (6.5) - Mod. Alkaline 119 (-) umho/cm None 6 (-) ppm** 51 (50) ppm	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627097 Customer Sample ID: 1491 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
H	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	443	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	19	(-)	ppm**			III				0.5 lbs N/1000sqft
Phosphorus	344	(50)	ppm				11111111111	11111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	546	(175)	ppm)11111111111111111111111111111111111111	I	0 lbs K20/1000sqft
Calcium	11,277	(180)	ppm					(111111111111	II	0 lbs Ca/1000sqft
Magnesium	578	(50)	ppm				111111111111		II	0 lbs Mg/1000sgft
Sulfur	149	(13)	ppm	111111111111				111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	130	(-)	ppm			I				
ron										
Zinc										
Manganese							i			
Copper										
Boron							I			
imestone Requirement				· ·						0.00 lbs/1000sqft
										·
CL =Critical level is the point w	thick no ode	ditional n	itriant (avalue	dina nitrat	o NI 00	dium o	ad aand	uotivitu)	io rocon	mmonded **nnm_ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627098 Customer Sample ID: 1492 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis .	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭΗ	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	187	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	22	(50)	ppm	11111111111				! !		2.2 lbs P2O5/1000sqft
Potassium	139	(175)	ppm	11111111111				! !		0.8 lbs K20/1000sqft
Calcium	23,137	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	224	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	208	(13)	ppm	11111111111				ווווווווווו	111111111	0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
lron) 		
Zinc								!		
Manganese								i		
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627099
Customer Sample ID: 1493
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. All	caline					
Conductivity	198	(-)	umho/cm	None			С	L*		Fertilizer Recommende
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	27	(50)	ppm				1	! !		1.8 lbs P2O5/1000sqft
Potassium	221	(175)	ppm			11111111111		ול		0 lbs K20/1000sqft
Calcium	12,711	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	366	(50)	ppm					11111111111		0 lbs Mg/1000sgft
Sulfur	121	(13)	ppm	11111111111	111111111111			,,,,,,,,,,,,		0 lbs S/1000sqft
Sodium	43	(-)	ppm	IIIIIIII						
lron								l I		
Zinc										
Manganese										
Copper										
Boron								l I		
Limestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627100
Customer Sample ID: 1494
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	Ful am	VII		Mad	I II ada	Miller	Fireses
pH	7.6	(6.5)	Ullits	Slightly A	VLow	Low	Mod	High	VHigh	Excess.
Conductivity	244		umho/cm	None	Aikaiiiie					Fertilizer Recommended
Nitrate-N		(-)		II			CI	•		,
	4	(-)	ppm**							1.3 lbs N/1000sqft
Phosphorus	369	(50)	ppm	11111111111111						0 lbs P2O5/1000sqft
Potassium	409	(175)	ppm							0 lbs K20/1000sqft
Calcium	9,608	(180)	ppm	11111111111111						0 lbs Ca/1000sqft
Magnesium	659	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	106	(13)	ppm						IIIIIII	0 lbs S/1000sqft
Sodium	66	(-)	ppm		Ш					
Iron										
Zinc										
Manganese										
Copper										
Boron							-			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627101 Customer Sample ID: 1495 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	95	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	71	(50)	ppm		111111111111			111111		0 lbs P2O5/1000sqft
Potassium	104	(175)	ppm		ШШШ)			1.6 lbs K20/1000sqft
Calcium	5,935	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	369	(50)	ppm		111111111111					0 lbs Mg/1000sgft
Sulfur	58	(13)	ppm	11111111111	11111111111			111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	33	(-)	ppm	IIIIIII						
ron										
Zinc										
V anganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627102 Customer Sample ID: 1496 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. All	kaline					
139	(-)	umho/cm	None			CI			Fertilizer Recommended
2	(-)	ppm**							1.4 lbs N/1000sqft
17	(50)	ppm			IIIIIII		l I		2.6 lbs P2O5/1000sqft
169	(175)	ppm		ШШШ			l i		0.1 lbs K20/1000sqft
12,235	(180)	ppm							0 lbs Ca/1000sqft
537	(50)	ppm		11111111111				II	0 lbs Mg/1000sgft
112	(13)	ppm		ШШШ			ווווווווווו	1111111	0 lbs S/1000sqft
42	(-)	ppm	IIIIIIII						
							l i		
			·						0.00 lbs/1000sqft
	7.9 139 2 17 169 12,235 537 112	7.9 (6.5) 139 (-) 2 (-) 17 (50) 169 (175) 12,235 (180) 537 (50) 112 (13)	7.9 (6.5) - 139 (-) umho/cm 2 (-) ppm** 17 (50) ppm 169 (175) ppm 12,235 (180) ppm 537 (50) ppm 112 (13) ppm	7.9 (6.5) - Mod. All 139 (-) umho/cm None 2 (-) ppm** 17 (50) ppm	7.9 (6.5) - Mod. Alkaline 139 (-) umho/cm None 2 (-) ppm** 17 (50) ppm	7.9 (6.5) - Mod. Alkaline 139 (-) umho/cm None 2 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	7.9 (6.5) - Mod. Alkaline 139 (-) umho/cm None ci 2 (-) ppm***	7.9 (6.5) - Mod. Alkaline 139 (-) umho/cm None cl. 2 (-) ppm** 17 (50) ppm	7.9 (6.5) - Mod. Alkaline 139 (-) umho/cm None cl- 2 (-) ppm** 17 (50) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627103 Customer Sample ID: 1497 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	217	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	26	(-)	ppm**		mmmi		1			0.2 lbs N/1000sqft
Phosphorus	51	(50)	ppm)		0 lbs P2O5/1000sqft
Potassium	228	(175)	ppm)11		0 lbs K20/1000sqft
Calcium	6,355	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	462	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	61	(13)	ppm	11111111111				111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627104 Customer Sample ID: 1498 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭΗ	8.2	(6.5)	-	Mod. All	caline					
Conductivity	119	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	80	(50)	ppm					1111111		0 lbs P2O5/1000sqft
Potassium	522	(175)	ppm)111111111111	I	0 lbs K20/1000sqft
Calcium	8,037	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	278	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	85	(13)	ppm					111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
Sodium	45	(-)	ppm							
ron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627105
Customer Sample ID: 1499
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	7.7	(6.5)	-	Mod. Alk		LOW	WOU	riigii	VIIIgli	EA0000.
Conductivity	1,060	(-)	umho/cm	Moderate			CL			Fertilizer Recommended
Nitrate-N	77	(-)	ppm**	111111111111111111111111111111111111111						0 lbs N/1000sqft
Phosphorus	53	(50)	ppm	111111111111111111111111111111111111111	1111111111		11111111111	l		0 lbs P2O5/1000sqft
Potassium	797	(175)	ppm	1111111111111			11111111111		II	0 lbs K20/1000sqft
Calcium	17,429	(180)	ppm	1111111111111	1111111111		11111111111		II	0 lbs Ca/1000sqft
/lagnesium	415	(50)	ppm		1111111111		11111111111		ı	0 lbs Mg/1000sgft
Sulfur	518	(13)	ppm							0 lbs S/1000sqft
Sodium	144	(-)	ppm		1111111111	III				
ron										
linc										
Manganese							i			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water.

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627106
Customer Sample ID: 1500
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	159	(-)	umho/cm	None			Cl	•		Fertilizer Recommended
Nitrate-N	25	(-)	ppm**)				0.2 lbs N/1000sqft
Phosphorus	804	(50)	ppm				ШШШ			0 lbs P2O5/1000sqft
Potassium	467	(175)	ppm			11111111111	1111111111		I	0 lbs K20/1000sqft
Calcium	11,386	(180)	ppm		:	:				0 lbs Ca/1000sqft
/lagnesium	708	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	140	(13)	ppm			11111111111	ШШШ			0 lbs S/1000sqft
Sodium	60	(-)	ppm		III					
ron										
linc										
Manganese										
Copper							,			
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft
CL =Critical level is the point w	thick no ode	ditional nu	itriant (avalu	dina nitrat	o NI 00	dium on	d cond		io rocon	mmandad **nnm ma//ca

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627107 Customer Sample ID: 1501 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.5	(6.5)	-	Slightly Al	lkaline					
1,400	(-)	umho/cm	Moderate			CI			Fertilizer Recommended
84	(-)	ppm**	111111111111111	mmi		111111111111	11111111111		0 lbs N/1000sqft
367	(50)	ppm		HIIIIII			111111111111111111111111111111111111111	IIIIII	0 lbs P2O5/1000sqft
643	(175)	ppm		mmi			111111111111111111111111111111111111111	II	0 lbs K20/1000sqft
8,075	(180)	ppm							0 lbs Ca/1000sqft
667	(50)	ppm		mmi				II	0 lbs Mg/1000sgft
288	(13)	ppm		mmi			111111111111111111111111111111111111111		0 lbs S/1000sqft
148	(-)	ppm		HIIIIII	III				
									0.00 lbs/1000sqft
	7.5 1,400 84 367 643 8,075 667 288	Results CL* 7.5 (6.5) 1,400 (-) 84 (-) 367 (50) 643 (175) 8,075 (180) 667 (50) 288 (13)	Results CL* Units 7.5 (6.5) - 1,400 (-) umho/cm 84 (-) ppm** 367 (50) ppm 643 (175) ppm 8,075 (180) ppm 667 (50) ppm 288 (13) ppm	Results CL* Units ExLow 7.5 (6.5) - Slightly A 1,400 (-) umho/cm Moderate 84 (-) ppm** 367 (50) ppm 643 (175) ppm 8,075 (180) ppm 667 (50) ppm 288 (13) ppm	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water.

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627108 Customer Sample ID: 1502 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	214	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	49	(50)	ppm		ШШШ		11111111111	l I		0 lbs P2O5/1000sqft
Potassium	198	(175)	ppm		ШШШ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)		0 lbs K20/1000sqft
Calcium	6,094	(180)	ppm				:			0 lbs Ca/1000sqft
Magnesium	291	(50)	ppm		ШШШ		111111111111	111111		0 lbs Mg/1000sgft
Sulfur	66	(13)	ppm		ШШШ		11111111111	111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	42	(-)	ppm	11111111						
ron										
Zinc										
V anganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627109
Customer Sample ID: 1503
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	182	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	50	(50)	ppm	11111111111			111111111111			0 lbs P2O5/1000sqft
Potassium	403	(175)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I	0 lbs K20/1000sqft
Calcium	9,061	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	253	(50)	ppm					IIIIII		0 lbs Mg/1000sgft
Sulfur	85	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627111
Customer Sample ID: 1504
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	322	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		l					0.9 lbs N/1000sqft
Phosphorus	423	(50)	ppm					,,,,,,,,,,,,	111111	0 lbs P2O5/1000sqft
Potassium	910	(175)	ppm					וווווווווווול	II	0 lbs K20/1000sqft
Calcium	6,332	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	413	(50)	ppm					11111111111	I	0 lbs Mg/1000sgft
Sulfur	234	(13)	ppm	111111111111				ווווווווווו	1111111111	0 lbs S/1000sqft
Sodium	28	(-)	ppm	IIIIII						
Iron								l I		
Zinc								!		
Manganese										
Copper										
Boron								l		
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w	12.1 1	re I .		P		1				

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627112 Customer Sample ID: 1505 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	138	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	43	(50)	ppm				1111111	! !		0.6 lbs P2O5/1000sqft
Potassium	102	(175)	ppm		111111111111)	! !		1.6 lbs K20/1000sqft
Calcium	1,682	(180)	ppm				:			0 lbs Ca/1000sqft
Magnesium	214	(50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)IIII		0 lbs Mg/1000sgft
Sulfur	40	(13)	ppm				11111111111) I I I I I I I I I I I I I I I I I I I		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron								l I		
Zinc								!		
Manganese								i		
Copper								i		
Boron								l I		
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627113 Customer Sample ID: 1506 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	109	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	141	(50)	ppm						II	0 lbs P2O5/1000sqft
otassium	208	(175)	ppm					II		0 lbs K20/1000sqft
Calcium	7,850	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	536	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	90	(13)	ppm					111111111111	IIIIII	0 lbs S/1000sqft
Sodium	50	(-)	ppm	1111111111						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL =Critical level is the point w	ubiob po ode	ditional nu	itriant (avalue	dina nitrat	o NI 00	dium o	ad aand	uotivity (io rocor	mmondod **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627114
Customer Sample ID: 1507
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
oH .	8.1	(6.5)	-	Mod. All	caline						
Conductivity	56	(-)	umho/cm	None			С	L*		Fertilizer Recommer	nded
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft	
Phosphorus	11	(50)	ppm					l I		3.1 lbs P2O5/1000	sqft
Potassium	117	(175)	ppm				Ш	!		1.3 lbs K20/1000sd	qft
Calcium	11,572	(180)	ppm					41111111111	II	0 lbs Ca/1000sqf	ft
Magnesium	256	(50)	ppm					111111		0 lbs Mg/1000sg	ft
Sulfur	100	(13)	ppm	11111111111) I I I I I I I I I I I I I I I I I I I	Ш	0 lbs S/1000sqft	
Sodium	10	(-)	ppm	l l							
ron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement				•						0.00 lbs/1000sqft	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627115 Customer Sample ID: 1508 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.3	(6.5)	-	Slightly	Alkaline					
329	(-)	umho/cm	None			Cl			Fertilizer Recommended
2	(-)	ppm**							1.4 lbs N/1000sqft
183	(50)	ppm	11111111111	111111111111		11111111111		Ш	0 lbs P2O5/1000sqft
309	(175)	ppm	11111111111	11111111111			1111111		0 lbs K20/1000sqft
8,192	(180)	ppm							0 lbs Ca/1000sqft
479	(50)	ppm		11111111111		11111111111		I	0 lbs Mg/1000sgft
233	(13)	ppm	11111111111	ШШШ				111111111	0 lbs S/1000sqft
39	(-)	ppm	1111111						
						ľ			
						l			
									0.00 lbs/1000sqft
	7.3 329 2 183 309 8,192 479 233	Results CL* 7.3 (6.5) 329 (-) 2 (-) 183 (50) 309 (175) 8,192 (180) 479 (50) 233 (13)	Results CL* Units 7.3 (6.5) - 329 (-) umho/cm 2 (-) ppm** 183 (50) ppm 309 (175) ppm 8,192 (180) ppm 479 (50) ppm 233 (13) ppm	Results CL* Units ExLow 7.3 (6.5) - Slightly 329 (-) umho/cm None 2 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.3 (6.5) - Slightly Alkaline 329 (-) umho/cm None 2 (-) ppm** 183 (50) ppm 309 (175) ppm 8,192 (180) ppm 479 (50) ppm 233 (13) ppm	Results CL* Units ExLow VLow Low 7.3 (6.5) - Slightly Alkaline - 329 (-) umho/cm None - 2 (-) ppm*** 183 (50) ppm	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627116 Customer Sample ID: Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	210	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	241	(50)	ppm		111111111111		11111111111		Ш	0 lbs P2O5/1000sqft
Potassium	486	(175)	ppm		ШШШ	1111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l	0 lbs K20/1000sqft
Calcium	8,165	(180)	ppm		111111111111		111111111111		II	0 lbs Ca/1000sqft
Magnesium	509	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	173	(13)	ppm	11111111111						0 lbs S/1000sqft
Sodium	35	(-)	ppm	IIIIIII						
Iron										
Zinc										
Manganese										
Copper							ľ			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	vhich no ado	ditional nu	ıtrient (exclud	ding nitrat	te-N. so	dium a	nd cond	uctivity)	is recor	mmended **ppm=ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627190
Customer Sample ID: 1510
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. All	caline					
120	(-)	umho/cm	None			CL			Fertilizer Recommended
7	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
289	(50)	ppm				11111111111		Ш	0 lbs P2O5/1000sqft
294	(175)	ppm							0 lbs K20/1000sqft
6,415	(180)	ppm					(11111111111111111111111111111111111111	l	0 lbs Ca/1000sqft
227	(50)	ppm				111111111111	Ш		0 lbs Mg/1000sgft
66	(13)	ppm						II	0 lbs S/1000sqft
21	(-)	ppm	Ш						
						į			
						ď			
									0.00 lbs/1000sqft
	120 7 289 294 6,415 227 66	120 (-) 7 (-) 289 (50) 294 (175) 6,415 (180) 227 (50) 66 (13)	120 (-) umho/cm 7 (-) ppm** 289 (50) ppm 294 (175) ppm 6,415 (180) ppm 227 (50) ppm 66 (13) ppm	120 (-) umho/cm None 7 (-) ppm** 289 (50) ppm 294 (175) ppm 6,415 (180) ppm 227 (50) ppm 66 (13) ppm	120 (-) umho/cm None 7 (-) ppm** IIIIIII 289 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 (-) umho/cm None 7 (-) ppm** IIIIIII 289 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 (-) umho/cm None cr 7 (-) ppm** IIIIIII cr 289 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 (-) umho/cm None CL* 7 (-) ppm**	7.9 (6.5) - Mod. Alkaline 120 (-) umho/cm None ct 7 (-) ppm** IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627191 Customer Sample ID: 1511 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.5	(6.5)	-	Slightly	Alkaline					
153	(-)	umho/cm	None			CL			Fertilizer Recommended
51	(-)	ppm**					I		0 lbs N/1000sqft
193	(50)	ppm	11111111111			111111111111111111111111111111111111111		Ш	0 lbs P2O5/1000sqft
163	(175)	ppm	11111111111			mmm;			0.2 lbs K20/1000sqft
11,330	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
668	(50)	ppm						II	0 lbs Mg/1000sgft
106	(13)	ppm	11111111111			шшщ		1111111	0 lbs S/1000sqft
42	(-)	ppm	IIIIIIII						
						į			
						i i			
							'		0.00 lbs/1000sqft
	7.5 153 51 193 163 11,330 668 106	7.5 (6.5) 153 (-) 51 (-) 193 (50) 163 (175) 11,330 (180) 668 (50) 106 (13)	7.5 (6.5) - 153 (-) umho/cm 51 (-) ppm** 193 (50) ppm 163 (175) ppm 11,330 (180) ppm 668 (50) ppm 106 (13) ppm	7.5 (6.5) - Slightly 7 153 (-) umho/cm None 51 (-) ppm**	7.5 (6.5) - Slightly Alkaline 153 (-) umho/cm None 51 (-) ppm**	7.5 (6.5) - Slightly Alkaline 153 (-) umho/cm None 51 (-) ppm**	7.5 (6.5) - Slightly Alkaline 153 (-) umho/cm None cl 51 (-) ppm**	7.5 (6.5) - Slightly Alkaline 153 (-) umho/cm None cl.* 51 (-) ppm***	7.5 (6.5) - Slightly Alkaline 153 (-) umho/cm None cl- 51 (-) ppm**

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627192 Customer Sample ID: 1512 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	106	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**		l					0.9 lbs N/1000sqft
Phosphorus	35	(50)	ppm				11111			1.2 lbs P2O5/1000sqft
Potassium	167	(175)	ppm				11111111111			0.1 lbs K20/1000sqft
Calcium	14,002	(180)	ppm				111111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	430	(50)	ppm				111111111111		I	0 lbs Mg/1000sgft
Sulfur	113	(13)	ppm	11111111111					IIIIIII	0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
ron										
Zinc										
V langanese										
Copper										
Boron							ı			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627193 Customer Sample ID: 1513 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
оН	7.8	(6.5)	-	Mod. Alkaline
Conductivity	224	(-)	umho/cm	
Nitrate-N	41	(-)	ppm**	
Phosphorus	293	(50)	ppm	
Potassium	409	(175)	ppm	
Calcium	12,606	(180)	ppm	
Magnesium Magnesium	559	(50)	ppm	
Sulfur	156	(13)		
Sodium	51	(-)	ppm	
ron	Ji	(-)	ppm	
Zinc				
Manganese				
Copper				
Soron				
				0.00 %-4000-46
_imestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627194
Customer Sample ID: 1514
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
ρΗ	7.3	(6.5)	-	Slightly Alkaline
Conductivity	456	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	90	(-)	ppm**	
Phosphorus	645	(50)	ppm	
Potassium	796	(175)	ppm	
Calcium	9,375	(180)	ppm	
Magnesium	662	(50)	ppm	
Sulfur	275	(13)	ppm	
Sodium	45	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
CL -Critical level is the point w	which no ado	ditional n	itrient (exclud	uding nitrate-N_sodium and conductivity) is recommended **nnm=mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627195 Customer Sample ID: 1515 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	110	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	17	(-)	ppm**			Ш				0.6 lbs N/1000sqft
Phosphorus	186	(50)	ppm	11111111111					Ш	0 lbs P2O5/1000sqft
Potassium	138	(175)	ppm				1111111			0.8 lbs K20/1000sqft
Calcium	9,875	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	456	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	86	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
*CL=Critical level is the point v	vhich no add	ditional nu	ıtrient (exclu	dina nitrat	e-N so	dium ai	nd cond	uctivity)	is recor	nmended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627196 Customer Sample ID: 1516 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis .	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	caline					
Conductivity	300	(-)	umho/cm	None			С			Fertilizer Recommended
Nitrate-N	121	(-)	ppm**		mmmi				Ш	0 lbs N/1000sqft
Phosphorus	66	(50)	ppm					11111		0 lbs P2O5/1000sqft
Potassium	244	(175)	ppm)II		0 lbs K20/1000sqft
Calcium	17,504	(180)	ppm				:		II	0 lbs Ca/1000sqft
Magnesium	289	(50)	ppm		mmmi		11111111111	111111		0 lbs Mg/1000sgft
Sulfur	155	(13)	ppm		ШШЩ		11111111111	,,,,,,,,,,,,		0 lbs S/1000sqft
Sodium	43	(-)	ppm	IIIIIIII						
lron										
Zinc								l i		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627197 Customer Sample ID: Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alkal	ine					
Conductivity	231	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	34	(-)	ppm**		IIIIIII		IIIII			0 lbs N/1000sqft
Phosphorus	188	(50)	ppm		HIIIII				Ш	0 lbs P2O5/1000sqft
Potassium	586	(175)	ppm	111111111111111111	IIIIIII)11111111111111111111111111111111111111	II	0 lbs K20/1000sqft
Calcium	13,664	(180)	ppm		IIIIIII			(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	560	(50)	ppm		mmi				II	0 lbs Mg/1000sgft
Sulfur	133	(13)	ppm		HIIIII			111111111111111111111111111111111111111	111111111	0 lbs S/1000sqft
Sodium	37	(-)	ppm	IIIIIII						
Iron										
Zinc										
Manganese										
Copper							ľ			
Boron							l I			
Limestone Requirement				•						0.00 lbs/1000sqft
*CL=Critical level is the point w	vhich no ado	ditional nu	ıtrient (exclud	ding nitrate-	N. soc	dium ar	nd cond	uctivity)	is recor	mmended **ppm=ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627198
Customer Sample ID: 1518
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.0	(6.5)	-	Mod. Alk	aline					
181	(-)	umho/cm	None			CI			Fertilizer Recommended
6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
324	(50)	ppm	11111111111					111111	0 lbs P2O5/1000sqft
728	(175)	ppm					111111111111111111111111111111111111111	II	0 lbs K20/1000sqft
10,028	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
567	(50)	ppm						II	0 lbs Mg/1000sgft
104	(13)	ppm	11111111111				111111111111111111111111111111111111111	1111111	0 lbs S/1000sqft
57	(-)	ppm							
									0.00 lbs/1000sqft
	8.0 181 6 324 728 10,028 567 104	Results CL* 8.0 (6.5) 181 (-) 6 (-) 324 (50) 728 (175) 10,028 (180) 567 (50) 104 (13)	Results CL* Units 8.0 (6.5) - 181 (-) umho/cm 6 (-) ppm** 324 (50) ppm 728 (175) ppm 10,028 (180) ppm 567 (50) ppm 104 (13) ppm	Results CL* Units ExLow 8.0 (6.5) - Mod. Alk 181 (-) umho/cm None 6 (-) ppm*** IIII 324 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 8.0 (6.5) - Mod. Alkaline 181 (-) umho/cm None 6 (-) ppm** IIII 324 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 8.0 (6.5) - Mod. Alkaline - 181 (-) umho/cm None - 6 (-) ppm*** IIII 324 (50) ppm 728 (175) ppm 10,028 (180) ppm 567 (50) ppm 104 (13) ppm	Results CL* Units ExLow VLow Low Mod 8.0 (6.5) - Mod. Alkaline - - - - - Mod. Alkaline -	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627199
Customer Sample ID: 1519
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	213	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	138	(50)	ppm	11111111111			11111111111		I	0 lbs P2O5/1000sqft
Potassium	563	(175)	ppm			11111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	himmi	I	0 lbs K20/1000sqft
Calcium	3,845	(180)	ppm	11111111111			111111111111	III		0 lbs Ca/1000sqft
Magnesium	327	(50)	ppm				111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	69	(13)	ppm	11111111111			11111111111		I	0 lbs S/1000sqft
Sodium	64	(-)	ppm		Ш					
ron										
Zinc										
Manganese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft
•										
*CL =Critical level is the point v	which no add	ditional n	utrient (exclu	ding nitrat	te-N so	dium a	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627201 Customer Sample ID: 1520 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.2	(6.5)	-	Mod. All	caline					
Conductivity	177	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	49	(50)	ppm				111111111111111111111111111111111111111	l I		0 lbs P2O5/1000sqft
Potassium	343	(175)	ppm)1111111111		0 lbs K20/1000sqft
Calcium	14,094	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	281	(50)	ppm				111111111111111111111111111111111111111	111111		0 lbs Mg/1000sgft
Sulfur	135	(13)	ppm				11111111111	111111111111		0 lbs S/1000sqft
Sodium	49	(-)	ppm	1111111111						
ron										
Zinc										
Manganese										
Copper							ľ			
Boron							l			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627202 Customer Sample ID: 1521 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	96	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	63	(50)	ppm	11111111111	111111111111)II		0 lbs P2O5/1000sqft
Potassium	157	(175)	ppm	11111111111	111111111111			!		0.4 lbs K20/1000sqft
Calcium	18,579	(180)	ppm	11111111111					III	0 lbs Ca/1000sqft
Magnesium	332	(50)	ppm		11111111111			1111111		0 lbs Mg/1000sgft
Sulfur	156	(13)	ppm	11111111111	111111111111			ווווווווו	HIIIIIII	0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron								 		
linc								!		
Manganese										
Copper										
Boron								l I		
imestone Requirement				· ·					•	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627203 Customer Sample ID: Crop Grown: GARDFN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKUEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	185	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	27	(-)	ppm**				l			0.1 lbs N/1000sqft
Phosphorus	314	(50)	ppm		ШШШ				111111	0 lbs P2O5/1000sqft
Potassium	467	(175)	ppm		1111111111				I	0 lbs K20/1000sqft
Calcium	10,072	(180)	ppm		ШШШ				II	0 lbs Ca/1000sqft
Magnesium	607	(50)	ppm		ШШШ				II	0 lbs Mg/1000sgft
Sulfur	101	(13)	ppm		1111111111				1111111	0 lbs S/1000sqft
Sodium	40	(-)	ppm	IIIIIIII						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement								,		0.00 lbs/1000sqft
*CL=Critical level is the point v	vhich no ado	ditional nu	itrient (exclud	ding nitrate	a-N so	dium ai	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627204 Customer Sample ID: 1523 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	caline					
Conductivity	126	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	101	(50)	ppm				11111111111	hooni	I	0 lbs P2O5/1000sqft
Potassium	167	(175)	ppm							0.1 lbs K20/1000sqft
Calcium	8,463	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	188	(50)	ppm				111111111111)IIII		0 lbs Mg/1000sgft
Sulfur	76	(13)	ppm				11111111111		III	0 lbs S/1000sqft
Sodium	15	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627205 Customer Sample ID: 1524 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.2	(6.5)	-	Mod. All	kaline					
87	(-)	umho/cm	None			Cl	•		Fertilizer Recommended
8	(-)	ppm**	HIIIIII						1 lbs N/1000sqft
29	(50)	ppm	11111111111	ШШШ					1.6 lbs P2O5/1000sqft
166	(175)	ppm	11111111111	ШШШ					0.2 lbs K20/1000sqft
12,354	(180)	ppm						II	0 lbs Ca/1000sqft
231	(50)	ppm		ШШШ			11111		0 lbs Mg/1000sgft
104	(13)	ppm	11111111111	111111111111					0 lbs S/1000sqft
39	(-)	ppm	IIIIIII						
						i			
						ļ,			
									0.00 lbs/1000sqft
thich no add	ditional nu	itriant (evolu	ding nitrat	o_N co	dium ar	nd cond	uctivity)	ie recor	nmended **nnm-ma/ka
	8.2 87 8 29 166 12,354 231 104 39	Results CL* 8.2 (6.5) 87 (-) 8 (-) 29 (50) 166 (175) 12,354 (180) 231 (50) 104 (13) 39 (-)	Results CL* Units 8.2 (6.5) - 87 (-) umho/cm 8 (-) ppm** 29 (50) ppm 166 (175) ppm 12,354 (180) ppm 231 (50) ppm 104 (13) ppm 39 (-) ppm	Results CL* Units ExLow	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627206
Customer Sample ID: 1525
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	242	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	10	(-)	ppm**							1 lbs N/1000sqft
Phosphorus	127	(50)	ppm				111111111111		II	0 lbs P2O5/1000sqft
Potassium	792	(175)	ppm)11111111111 <u>1</u>		II	0 lbs K20/1000sqft
Calcium	8,015	(180)	ppm				111111111111		II	0 lbs Ca/1000sqft
Magnesium	524	(50)	ppm				111111111111111111111111111111111111111		II	0 lbs Mg/1000sgft
Sulfur	107	(13)	ppm				,,,,,,,,,,,,,,,		ШШ	0 lbs S/1000sqft
Sodium	64	(-)	ppm		II .					
ron										
Zinc										
V anganese										
Copper										
Boron										
imestone Requirement								'		0.00 lbs/1000sqft
CL -Critical layed is the point w	1.1.1	P.C 1	1.1	P				\		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627207
Customer Sample ID: 1526
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
oH .	7.9	(6.5)	=	Mod. All	kaline						
Conductivity	154	(-)	umho/cm	None			CI			Fertilizer Recommend	ded
Nitrate-N	9	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft	
Phosphorus	179	(50)	ppm				11111111111	111111111111111111111111111111111111111	III	0 lbs P2O5/1000s	qft
Potassium	241	(175)	ppm)		0 lbs K20/1000sqt	ft
Calcium	11,926	(180)	ppm					(111111111111	II	0 lbs Ca/1000sqft	
Magnesium	283	(50)	ppm				11111111111	111111		0 lbs Mg/1000sgft	
Sulfur	108	(13)	ppm	11111111111				11111111111		0 lbs S/1000sqft	
Sodium	14	(-)	ppm	II							
ron											
Zinc											
Manganese											
Copper											
Boron							ļ				
imestone Requirement				•						0.00 lbs/1000sqft	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627208
Customer Sample ID: 1527
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.3	(6.5)	-	Slightly	Alkaline					
343	(-)	umho/cm	None			С			Fertilizer Recommended
38	(-)	ppm**	11111111111			11111			0 lbs N/1000sqft
581	(50)	ppm	11111111111			11111111111	11111111111	1111111	0 lbs P2O5/1000sqft
325	(175)	ppm	11111111111)111111		0 lbs K20/1000sqft
9,095	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
674	(50)	ppm						II	0 lbs Mg/1000sgft
273	(13)	ppm	11111111111				ווווווווווו	11111111111	0 lbs S/1000sqft
52	(-)	ppm							
							l I		
								•	0.00 lbs/1000sqft
	7.3 343 38 581 325 9,095 674 273	Results CL* 7.3 (6.5) 343 (-) 581 (50) 325 (175) 9,095 (180) 674 (50) 273 (13)	Results CL* Units 7.3 (6.5) - 343 (-) umho/cm 38 (-) ppm** 581 (50) ppm 325 (175) ppm 9,095 (180) ppm 674 (50) ppm 273 (13) ppm	Results CL* Units ExLow 7.3 (6.5) - Slightly or S	Results CL* Units ExLow VLow 7.3 (6.5) - Slightly Alkaline 343 (-) umho/cm None 38 (-) ppm**	Results CL* Units ExLow VLow Low 7.3 (6.5) - Slightly Alkaline - 343 (-) umho/cm None - 38 (-) ppm***	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627209 Customer Sample ID: 1528 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis .	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	166	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	16	(-)	ppm**	11111111111	mmmi	I				0.6 lbs N/1000sqft
Phosphorus	29	(50)	ppm	11111111111			l			1.6 lbs P2O5/1000sqft
Potassium	407	(175)	ppm	11111111111)11111111111111111111111111111111111111	l	0 lbs K20/1000sqft
Calcium	10,208	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
/lagnesium	287	(50)	ppm				111111111111	111111		0 lbs Mg/1000sgft
Sulfur	90	(13)	ppm	11111111111				111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement				· ·						0.00 lbs/1000sqft
-										
*CI =Critical level is the point w	vhich no ado	ditional nu	itrient (evelu	dina nitrat	a-N so	dium ar	nd cond	uctivity)	is recon	nmended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627210
Customer Sample ID: 1529
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	165	(-)	umho/cm	None			С	L*		Fertilizer Recommende
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	25	(50)	ppm					 		2 lbs P2O5/1000sqft
Potassium	311	(175)	ppm			11111111111		† 111111		0 lbs K20/1000sqft
Calcium	13,059	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	240	(50)	ppm					ļiiii		0 lbs Mg/1000sgft
Sulfur	105	(13)	ppm			11111111111		; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111	0 lbs S/1000sqft
Sodium	29	(-)	ppm	IIIIII						
lron										
Zinc								!		
Manganese										
Copper										
Boron								 		
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627128
Customer Sample ID: 1530
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	173	(-)	umho/cm	None			Cl			Fertilizer Recommended
Nitrate-N	28	(-)	ppm**		mmmi	111111111111	l			0.1 lbs N/1000sqft
Phosphorus	114	(50)	ppm	11111111111		11111111111)	II	0 lbs P2O5/1000sqft
Potassium	129	(175)	ppm			11111111111				1 lbs K20/1000sqft
Calcium	9,670	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	374	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	92	(13)	ppm	11111111111				11111111111	IIIIII	0 lbs S/1000sqft
Sodium	25	(-)	ppm	Ш						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement				•						0.00 lbs/1000sqft
•										
CL=Critical level is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627169
Customer Sample ID: 1730
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH	8.2		Offics	Mod. Alk		LOW	WOU	nigii	vnigii	EXCESS.
		(6.5)	- ,		aiiie					English December ded
Conductivity	79	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	19	(50)	ppm					i		2.4 lbs P2O5/1000sqft
Potassium	116	(175)	ppm					 		1.3 lbs K20/1000sqft
Calcium	6,135	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	156	(50)	ppm		mmmi	11111111111)III		0 lbs Mg/1000sgft
Sulfur	62	(13)	ppm					,,,,,,,,,,,	II	0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
ron								 		
Zinc								!		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627171 Customer Sample ID: 1731 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	196	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	53	(50)	ppm		ШШШ		11111111111)		0 lbs P2O5/1000sqft
Potassium	378	(175)	ppm		ШШШ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ווווווווון		0 lbs K20/1000sqft
Calcium	5,903	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	419	(50)	ppm		11111111111		111111111111		l	0 lbs Mg/1000sgft
Sulfur	65	(13)	ppm	11111111111	ШШШ		11111111111) I I I I I I I I I I I I I I I I I I I	I	0 lbs S/1000sqft
Sodium	31	(-)	ppm	IIIIIII						
Iron								¦		
Zinc								!		
Manganese										
Copper										
Boron										
Limestone Requirement				•				•		0.00 lbs/1000sqft
CI - Critical layed is the point w		1								

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627172 Customer Sample ID: 1732 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	109	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	25	(50)	ppm	11111111111			1			1.9 lbs P2O5/1000sqft
Potassium	199	(175)	ppm		ШШШ)		0 lbs K20/1000sqft
Calcium	5,723	(180)	ppm					(1111		0 lbs Ca/1000sqft
/lagnesium	192	(50)	ppm		11111111111			11111		0 lbs Mg/1000sgft
Sulfur	62	(13)	ppm	11111111111	ШШШ			111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627173
Customer Sample ID: 1733
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. Alk	kaline					
Conductivity	95	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	79	(50)	ppm				111111111111	1111111		0 lbs P2O5/1000sqft
Potassium	338	(175)	ppm				11111111111	1111111111		0 lbs K20/1000sqft
Calcium	17,321	(180)	ppm	11111111111			11111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	394	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	167	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111	111111111	0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w		reconstant	1.1			1		\		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627174 Customer Sample ID: 1734 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	81	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		I					0.9 lbs N/1000sqft
Phosphorus	311	(50)	ppm	11111111111					IIIIII	0 lbs P2O5/1000sqft
Potassium	96	(175)	ppm							1.8 lbs K20/1000sqft
Calcium	2,924	(180)	ppm	11111111111			111111111111	III		0 lbs Ca/1000sqft
/lagnesium	339	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	50	(13)	ppm	11111111111					I	0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
-										<u> </u>
*CL=Critical level is the point v	ulada bi a a i i di	distance l	-tit (i	dia a alter t	- NI - :	-li		4114 \		***************************************

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627175
Customer Sample ID: 1735
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.7	(6.5)	-	Mod. Alk	aline					
125	(-)	umho/cm	None			CI	•		Fertilizer Recommended
0	(-)	ppm**							1.4 lbs N/1000sqft
64	(50)	ppm					Ш		0 lbs P2O5/1000sqft
242	(175)	ppm					Ш		0 lbs K20/1000sqft
7,095	(180)	ppm						II	0 lbs Ca/1000sqft
344	(50)	ppm							0 lbs Mg/1000sgft
66	(13)	ppm	11111111111					II	0 lbs S/1000sqft
47	(-)	ppm	11111111111						
			•						0.00 lbs/1000sqft
	7.7 125 0 64 242 7,095 344 66	Results CL* 7.7 (6.5) 125 (-) 0 (-) 64 (50) 242 (175) 7,095 (180) 344 (50) 66 (13)	Results CL* Units 7.7 (6.5) - 125 (-) umho/cm 0 (-) ppm** 64 (50) ppm 242 (175) ppm 7,095 (180) ppm 344 (50) ppm 66 (13) ppm	Results CL* Units ExLow 7.7 (6.5) - Mod. Alk 125 (-) umho/cm None 0 (-) ppm** 64 (50) ppm 242 (175) ppm 7,095 (180) ppm 344 (50) ppm 66 (13) ppm	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627176
Customer Sample ID: 1736
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	102	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		l					0.9 lbs N/1000sqft
Phosphorus	268	(50)	ppm				11111111111)	Ш	0 lbs P2O5/1000sqft
Potassium	275	(175)	ppm					IIIIII		0 lbs K20/1000sqft
Calcium	7,381	(180)	ppm				111111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	516	(50)	ppm				11111111111		II	0 lbs Mg/1000sgft
Sulfur	74	(13)	ppm					111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron										
Zinc										
V langanese										
Copper							ľ			
Boron							l			
Limestone Requirement										0.00 lbs/1000sqft
CL —Critical layed is the point w		re i .	13.16.1	12 24 4		P				

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627177
Customer Sample ID: 1737
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	176	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**		IIIII					0.8 lbs N/1000sqft
Phosphorus	366	(50)	ppm					,,,,,,,,,,,	ШШ	0 lbs P2O5/1000sqft
Potassium	127	(175)	ppm				111111	! !		1.1 lbs K20/1000sqft
Calcium	10,770	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	593	(50)	ppm				111111111111)	II	0 lbs Mg/1000sgft
Sulfur	148	(13)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ווווווווווו	111111111	0 lbs S/1000sqft
Sodium	74	(-)	ppm		IIIII					
Iron								! !		
Zinc								!		
Manganese								i		
Copper										
Boron										
Limestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627178
Customer Sample ID: 1738
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-		aline				<u>J.</u>	
180	(-)	umho/cm	None			CL			Fertilizer Recommended
20	(-)	ppm**		IIIIIIIII	Ш				0.5 lbs N/1000sqft
209	(50)	ppm	11111111111					Ш	0 lbs P2O5/1000sqft
417	(175)	ppm						l	0 lbs K20/1000sqft
6,456	(180)	ppm							0 lbs Ca/1000sqft
418	(50)	ppm						l	0 lbs Mg/1000sgft
75	(13)	ppm				IIIIIIIIII		Ш	0 lbs S/1000sqft
23	(-)	ppm	IIII						
						l			
						i			
						I			
									0.00 lbs/1000sqft
	7.8 180 20 209 417 6,456 418 75	Results CL* 7.8 (6.5) 180 (-) 20 (-) 209 (50) 417 (175) 6,456 (180) 418 (50) 75 (13)	Results CL* Units 7.8 (6.5) - 180 (-) umho/cm 20 (-) ppm** 209 (50) ppm 417 (175) ppm 6,456 (180) ppm 418 (50) ppm 75 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Alk 180 (-) umho/cm None 20 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 180 (-) umho/cm None 20 (-) ppm**	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 180 (-) umho/cm None - 20 (-) ppm**	Results CL* Units ExLow VLow Low Mod 7.8 (6.5) - Mod. Alkaline - CI - Mod. Alkaline - CI - CI - CI - - - - CI -	Results CL* Units ExLow VLow Low Mod High 7.8 (6.5) - Mod. Alkaline -<	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627179
Customer Sample ID: 1739
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. All	caline					
Conductivity	118	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	6	(50)	ppm		Ш			l I		3.5 lbs P2O5/1000sqft
Potassium	124	(175)	ppm		ШШШ		Ш	 		1.1 lbs K20/1000sqft
Calcium	17,980	(180)	ppm				:		-	0 lbs Ca/1000sqft
/lagnesium	507	(50)	ppm		11111111111			11111111111	II	0 lbs Mg/1000sgft
Sulfur	157	(13)	ppm		ШШШ			ווווווווווו	1111111111	0 lbs S/1000sqft
Sodium	40	(-)	ppm	IIIIIIII						
ron								l I		
linc								!		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
										mmonded **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627180
Customer Sample ID: 1740
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	139	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	158	(50)	ppm		111111111111		111111111111	;	Ш	0 lbs P2O5/1000sqft
Potassium	257	(175)	ppm		111111111111		•			0 lbs K20/1000sqft
Calcium	6,264	(180)	ppm			:	:			0 lbs Ca/1000sqft
Magnesium	272	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	63	(13)	ppm				111111111111	,,,,,,,,,,,,,,,	II	0 lbs S/1000sqft
Sodium	23	(-)	ppm	IIII						
Iron								;		
Zinc								!		
Manganese								!		
Copper								i		
Boron								l I		
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627181 Customer Sample ID: 1741 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	109	(-)	umho/cm	None			С	_•		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	109	(50)	ppm		ШШШ			100000	II	0 lbs P2O5/1000sqft
Potassium	361	(175)	ppm		ШШШ)11111111111		0 lbs K20/1000sqft
Calcium	16,965	(180)	ppm				:		II	0 lbs Ca/1000sqft
Magnesium	277	(50)	ppm		ШШШ		11111111111	111111		0 lbs Mg/1000sgft
Sulfur	145	(13)	ppm		111111111111)		0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIII						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627182 Customer Sample ID: 1742 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.3	(6.5)	-	Mod. All	kaline					
Conductivity	79	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	5	(50)	ppm	1111111111						3.6 lbs P2O5/1000sqft
Potassium	70	(175)	ppm			Ш				2.4 lbs K20/1000sqft
Calcium	16,029	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	314	(50)	ppm				111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	134	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
ron										
Zinc										
V anganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627183 **Customer Sample ID:** 1743 **Crop Grown: GARDEN**

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

er Recommended
lbs N/1000sqft
lbs P2O5/1000sqft
lbs K20/1000sqft
lbs Ca/1000sqft
lbs Mg/1000sgft
lbs S/1000sqft
lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627184
Customer Sample ID: 1744
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	159	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	64	(50)	ppm				111111111111	וונ		0 lbs P2O5/1000sqft
Potassium	262	(175)	ppm		ШШШ		11111111111	וווול		0 lbs K20/1000sqft
Calcium	4,739	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	373	(50)	ppm		111111111111		111111111111	11111111111		0 lbs Mg/1000sgft
Sulfur	253	(13)	ppm	11111111111	11111111111		11111111111	ווווווווווו		0 lbs S/1000sqft
Sodium	30	(-)	ppm	IIIIIII						
ron								! !		
Zinc								!		
Manganese								i		
Copper										
Boron										
imestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627185 Customer Sample ID: 1745 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH.	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	229	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	128	(50)	ppm	11111111111			111111111111)	II	0 lbs P2O5/1000sqft
Potassium	491	(175)	ppm	11111111111			11111111111	himmi	l	0 lbs K20/1000sqft
Calcium	11,410	(180)	ppm	11111111111			111111111111	(11111111111	II	0 lbs Ca/1000sqft
/lagnesium	358	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	323	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	93	(-)	ppm							
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				i i						0.00 lbs/1000sqft
-										
CL =Critical level is the point w	thich no ode	litional n	itriant (avalue	dina nitrat	o N. oo	dium o	ad aand	atis cits c\	io *****	amonded **ann ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627186 Customer Sample ID: 1746 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

7.9 106	(6.5)	_	NA AII-						
106			Mod. Alk	aline					
	(-)	umho/cm	None			Cl			Fertilizer Recommended
9	(-)	ppm**	1111111111						1 lbs N/1000sqft
343	(50)	ppm						111111	0 lbs P2O5/1000sqft
246	(175)	ppm)II		0 lbs K20/1000sqft
6,402	(180)	ppm							0 lbs Ca/1000sqft
444	(50)	ppm						I	0 lbs Mg/1000sgft
69	(13)	ppm						II	0 lbs S/1000sqft
17	(-)	ppm	Ш						
						ľ			
									0.00 lbs/1000sqft
	246 6,402 444 69 17	343 (50) 246 (175) 6,402 (180) 444 (50) 69 (13) 17 (-)	343 (50) ppm 246 (175) ppm 6,402 (180) ppm 444 (50) ppm 69 (13) ppm 17 (-) ppm	343 (50) ppm	343 (50) ppm				

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627187 Customer Sample ID: 1747 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	V⊌iah	Excess.
рН	8.1	(6.5)	Office	Mod. Alk		LOW	WOU	riigii	Viligii	EXCESS.
Conductivity	163	(-)	umho/cm	None	aiiiie					Fertilizer Recommended
Nitrate-N	16	(-)	ppm**	IIIIIIIIIIII			С	L*		0.7 lbs N/1000sqft
Phosphorus	288	(50)		111111111111				4	1111	0.7 lbs 14/1000sqft 0 lbs P2O5/1000sqft
Potassium	544	(175)	ppm					-		0 lbs K20/1000sqft
Calcium		(173)	ppm	111111111111					•	0 lbs Ca/1000sqft
	11,791	,	ppm		:		:		:	
Magnesium Davidania	603	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	121	(13)	ppm				11111111111	,	1111111	0 lbs S/1000sqft
Sodium	93	(-)	ppm		1111111111					
ron								i		
Zinc								i		
Manganese										
Copper								į		
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL - Critical lovel is the point w		11.01								

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627188
Customer Sample ID: 1748
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	133	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	18	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	64	(50)	ppm	11111111111				Ш		0 lbs P2O5/1000sqft
Potassium	230	(175)	ppm	11111111111)II		0 lbs K20/1000sqft
Calcium	15,665	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	383	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	129	(13)	ppm	11111111111				111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	28	(-)	ppm	IIIIII						
ron										
Zinc								l i		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627189 Customer Sample ID: Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	193	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	IIII						1.2 lbs N/1000sqft
Phosphorus	585	(50)	ppm					111111111111	1111111	0 lbs P2O5/1000sqft
Potassium	730	(175)	ppm					וווווווווווו	II	0 lbs K20/1000sqft
Calcium	11,457	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	576	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	134	(13)	ppm					hiiiiiiiii	1111111111	0 lbs S/1000sqft
Sodium	88	(-)	ppm							
Iron										
Zinc								 		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	litional nu	itrient (exclud	ding nitrat	e-N so	dium ai	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627149
Customer Sample ID: 1750
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

7.7 206 20 395 147	(6.5) (-) (-) (50)	- umho/cm ppm**	Mod. Alk None	caline	-	Mod	High	VHigh	Excess.
20 395	(-)								
395	(-)	ppm**				CL	•		Fertilizer Recommended
	(50)		111111111111		III				0.5 lbs N/1000sqft
147		ppm	11111111111					IIIIII	0 lbs P2O5/1000sqft
	(175)	ppm				 			0.6 lbs K20/1000sqft
6,594	(180)	ppm	11111111111		IIIIIIIIII			II	0 lbs Ca/1000sqft
366	(50)	ppm							0 lbs Mg/1000sgft
107	(13)	ppm	11111111111		IIIIIIIIII	шшш		1111111	0 lbs S/1000sqft
36	(-)	ppm	IIIIIII						
						ľ			
						:			
						į			
						i			
						I I			
							'		0.00 lbs/1000sqft
	107 36	107 (13) 36 (-)	107 (13) ppm 36 (-) ppm	107 (13) ppm	107 (13) ppm				

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627150 Customer Sample ID: 1751 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	106	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	157	(50)	ppm		111111111111			111111111111111111111111111111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	266	(175)	ppm		111111111111)IIII		0 lbs K20/1000sqft
Calcium	3,684	(180)	ppm		111111111111			III		0 lbs Ca/1000sqft
Magnesium	215	(50)	ppm		111111111111			Ш		0 lbs Mg/1000sgft
Sulfur	51	(13)	ppm	11111111111	11111111111			ווווווווווו	II	0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
Zinc								l i		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627151 **Customer Sample ID:** 1752 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
θΗ	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	64	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	200	(50)	ppm				111111111111		Ш	0 lbs P2O5/1000sqft
Potassium	162	(175)	ppm		ШШШ		,,,,,,,,,,,,,,,,,			0.3 lbs K20/1000sqft
Calcium	10,878	(180)	ppm				111111111111		II	0 lbs Ca/1000sqft
Magnesium	358	(50)	ppm		11111111111					0 lbs Mg/1000sgft
Sulfur	111	(13)	ppm		ШШШ				1111111	0 lbs S/1000sqft
Sodium	35	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	ditional nu	itrient (exclud	ding nitrat	e-N so	dium a	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627152 **Customer Sample ID:** 1753 **Crop Grown: GARDEN**

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.3	(6.5)	-	Mod. All	aline					
94	(-)	umho/cm	None			CI	•		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
30	(50)	ppm				III	l I		1.5 lbs P2O5/1000sqft
190	(175)	ppm				,,,,,,,,,,,,,,,,,)		0 lbs K20/1000sqft
12,302	(180)	ppm						II	0 lbs Ca/1000sqft
242	(50)	ppm					IIIII		0 lbs Mg/1000sgft
117	(13)	ppm						1111111	0 lbs S/1000sqft
26	(-)	ppm	IIIIII						
			•						0.00 lbs/1000sqft
	8.3 94 1 30 190 12,302 242 117	Results CL* 8.3 (6.5) 94 (-) 1 (-) 30 (50) 190 (175) 12,302 (180) 242 (50) 117 (13)	Results CL* Units 8.3 (6.5) - 94 (-) umho/cm 1 (-) ppm** 30 (50) ppm 190 (175) ppm 12,302 (180) ppm 242 (50) ppm 117 (13) ppm	Results CL* Units ExLow 8.3 (6.5) - Mod. Alk 94 (-) umho/cm None 1 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 8.3 (6.5) - Mod. Alkaline 94 (-) umho/cm None 1 (-) ppm** 30 (50) ppm 190 (175) ppm 12,302 (180) ppm 242 (50) ppm 117 (13) ppm	Results CL* Units ExLow VLow Low 8.3 (6.5) - Mod. Alkaline - 94 (-) umho/cm None - 1 (-) ppm***	Results CL* Units ExLow VLow Low Mod 8.3 (6.5) - Mod. Alkaline - - - - - Mod. Alkaline -	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627153 Customer Sample ID: 1754 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭΗ	7.6	(6.5)	-	Mod. All	caline					
Conductivity	163	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	131	(50)	ppm)11111111111	II	0 lbs P2O5/1000sqft
Potassium	191	(175)	ppm					ነ		0 lbs K20/1000sqft
Calcium	6,796	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	513	(50)	ppm					111111111111	II	0 lbs Mg/1000sgft
Sulfur	84	(13)	ppm	11111111111				,,,,,,,,,,	Ш	0 lbs S/1000sqft
Sodium	42	(-)	ppm	IIIIIIII						
ron								 		
Zinc								!		
Manganese										
Copper										
Boron										
Limestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627154 Customer Sample ID: 1755 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Excess.	High Exc	VHigh	High	Mod	ow	,	VLow	ExLow	Units	CL*	Results	Analysis .
							kaline	Mod. Al	=	(6.5)	8.2	Н
Fertilizer Recommended				CL*				None	umho/cm	(-)	141	Conductivity
1.4 lbs N/1000sqft									ppm**	(-)	1	Nitrate-N
0 lbs P2O5/1000sqft	ı	HIIII		шщ	ШЩ	IļIII			ppm	(50)	302	Phosphorus
0 lbs K20/1000sqft				шиф	ШЩ	ЩП	İIIIIIIII	11111111111	ppm	(175)	393	Potassium
0 lbs Ca/1000sqft		•							ppm	(180)	14,502	Calcium
0 lbs Mg/1000sgft		III		ШШЙ	ШЩ	ЩП	İIIIIIIII	11111111111	ppm	(50)	511	/lagnesium
0 lbs S/1000sqft	Ш	(шиф	111111)1	ЩШ		11111111111	ppm	(13)	169	Sulfur
								ШШ	ppm	(-)	33	Sodium
												ron
				- !								Zinc .
				į								Manganese
												Copper
				- !								Boron
0.00 lbs/1000sqft								·				imestone Requirement
												-
n	recomn) is rec	ctivity)	condu	m and	odii	ite-N si	ling nitra	itrient (exclud	litional nu	hich no ado	*CI =Critical level is the point w

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627155 Customer Sample ID: 1756 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.6	(6.5)	-	Mod. All	aline					
83	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
9	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft
751	(50)	ppm					111111111111111111111111111111111111111	ШШ	0 lbs P2O5/1000sqft
404	(175)	ppm)11111111111111111111111111111111111111	l	0 lbs K20/1000sqft
5,475	(180)	ppm							0 lbs Ca/1000sqft
446	(50)	ppm							0 lbs Mg/1000sgft
82	(13)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
45	(-)	ppm	11111111						
			•						0.00 lbs/1000sqft
	7.6 83 9 751 404 5,475 446 82	7.6 (6.5) 83 (-) 9 (-) 751 (50) 404 (175) 5,475 (180) 446 (50) 82 (13)	7.6 (6.5) - 83 (-) umho/cm 9 (-) ppm** 751 (50) ppm 404 (175) ppm 5,475 (180) ppm 446 (50) ppm 82 (13) ppm	7.6 (6.5) - Mod. All 83 (-) umho/cm None 9 (-) ppm**	7.6 (6.5) - Mod. Alkaline 83 (-) umho/cm None 9 (-) ppm**	7.6 (6.5) - Mod. Alkaline 83 (-) umho/cm None 9 (-) ppm**	7.6 (6.5) - Mod. Alkaline 83 (-) umho/cm None ci 9 (-) ppm**	7.6 (6.5) - Mod. Alkaline 83 (-) umho/cm None ct 9 (-) ppm**	7.6 (6.5) - Mod. Alkaline 83 (-) umho/cm None cl. 9 (-) ppm**

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627156 Customer Sample ID: 1757 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown. G		CL*	l lmita			_				_
nalysis 	Results		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	542	(-)	umho/cm	Slight			CL			Fertilizer Recommended
Nitrate-N	52	(-)	ppm**				: :			0 lbs N/1000sqft
Phosphorus	429	(50)	ppm	11111111111						0 lbs P2O5/1000sqft
Potassium	790	(175)	ppm		mmmi		1000000		II	0 lbs K20/1000sqft
Calcium	7,557	(180)	ppm		:		: .			0 lbs Ca/1000sqft
/lagnesium	740	(50)	ppm				11111111111		II	0 lbs Mg/1000sgft
Sulfur	177	(13)	ppm	111111111111			,,,,,,,,,,,,		111111111	0 lbs S/1000sqft
Sodium	58	(-)	ppm							
ron										
Zinc							!			
Manganese							i			
Copper							i			
Boron							:			
imestone Requirement										0.00 lbs/1000sqft
<u> </u>										
CL =Critical level is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627157 Customer Sample ID: 1758 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	326	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	9	(-)	ppm**							1 lbs N/1000sqft
Phosphorus	341	(50)	ppm						111111	0 lbs P2O5/1000sqft
Potassium	285	(175)	ppm					111111		0 lbs K20/1000sqft
Calcium	15,020	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	362	(50)	ppm					111111111		0 lbs Mg/1000sgft
Sulfur	243	(13)	ppm	11111111111						0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron							l I			
imestone Requirement				· ·						0.00 lbs/1000sqft
-										
CL =Critical level is the point w	hich no add	ditional nu	itriant (avalue	dina nitrat	o N. co	dium o	ad oond	otiv (itv.)	io rocon	nmandad **nnm_ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627158
Customer Sample ID: 1759
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	309	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	39	(-)	ppm**				IIIIIII			0 lbs N/1000sqft
Phosphorus	303	(50)	ppm	11111111111				humm	111111	0 lbs P2O5/1000sqft
Potassium	302	(175)	ppm					וווווו		0 lbs K20/1000sqft
Calcium	14,960	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	597	(50)	ppm) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	II	0 lbs Mg/1000sgft
Sulfur	179	(13)	ppm					†IIIIIIIIIIII		0 lbs S/1000sqft
Sodium	30	(-)	ppm	1111111						
ron								! !		
Zinc								l I		
Vlanganese								i !		
Copper								'		
Boron								l I		
Limestone Requirement										0.00 lbs/1000sqft
										mmonded **nnm mod/lea

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627159
Customer Sample ID: 1760
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

8.2	(6.5)								
	(0.0)	-	Mod. Alk	caline					
160	(-)	umho/cm	None			CI			Fertilizer Recommended
6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
112	(50)	ppm				111111111111		I	0 lbs P2O5/1000sqft
380	(175)	ppm					11111111111		0 lbs K20/1000sqft
8,094	(180)	ppm						I	0 lbs Ca/1000sqft
364	(50)	ppm					111111111		0 lbs Mg/1000sgft
85	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
28	(-)	ppm	IIIIII						
									0.00 lbs/1000sqft
	112 380 8,094 364 85 28	112 (50) 380 (175) 8,094 (180) 364 (50) 85 (13) 28 (-)	112 (50) ppm 380 (175) ppm 8,094 (180) ppm 364 (50) ppm 85 (13) ppm 28 (-) ppm	112 (50) ppm					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627160 Customer Sample ID: Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	245	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**)II			0 lbs N/1000sqft
Phosphorus	219	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	297	(175)	ppm				,,,,,,,,,,,,,,,,,	IIIIII		0 lbs K20/1000sqft
Calcium	14,289	(180)	ppm				111111111111		II	0 lbs Ca/1000sqft
Magnesium	387	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	151	(13)	ppm						1111111111	0 lbs S/1000sqft
Sodium	22	(-)	ppm	IIII						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	ditional nu	itrient (exclud	ding nitrate	e-N so	dium ai	nd cond	uctivity)	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627161 Customer Sample ID: 1762 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	167	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**			Ш				0.5 lbs N/1000sqft
Phosphorus	143	(50)	ppm				111111111111	111111111111111111111111111111111111111	II	0 lbs P2O5/1000sqft
Potassium	869	(175)	ppm	111111111111				111111111111111111111111111111111111111	II	0 lbs K20/1000sqft
Calcium	6,774	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	408	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	72	(13)	ppm	1111111111111				111111111111111111111111111111111111111	III	0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w	12-1 1	P.C I .			. NI	P				1 1 44 /1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627162 Customer Sample ID: 1763 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	242	(-)	umho/cm	None			С	_•		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	170	(50)	ppm	11111111111				111111111111111111111111111111111111111	III	0 lbs P2O5/1000sqft
Potassium	534	(175)	ppm	11111111111)111111111111	I	0 lbs K20/1000sqft
Calcium	9,304	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	342	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	95	(13)	ppm	11111111111				111111111111111111111111111111111111111	IIIIII	0 lbs S/1000sqft
Sodium	63	(-)	ppm	11111111111	III					
ron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627163 Customer Sample ID: 1764 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.3	(6.5)	-	Mod. Alk	caline					
Conductivity	96	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	14	(50)	ppm			Ш				2.8 lbs P2O5/1000sqft
Potassium	220	(175)	ppm		mmmi		,,,,,,,,,,,,,,,,	ll .		0 lbs K20/1000sqft
Calcium	24,805	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	396	(50)	ppm					11111111111		0 lbs Mg/1000sgft
Sulfur	223	(13)	ppm	11111111111				111111111111		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627164 **Customer Sample ID:** 1765 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	IARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
H	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	123	(-)	umho/cm	None			С	_*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**			Ш				0.5 lbs N/1000sqft
Phosphorus	336	(50)	ppm					111111111111111111111111111111111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	419	(175)	ppm)111111111111	l	0 lbs K20/1000sqft
Calcium	8,207	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	362	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	126	(13)	ppm					111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	which no adv	ditional n	itrient (exclus	dina nitrat	o-N so	dium a	nd cond	uctivity	is recor	mmended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627165 Customer Sample ID: 1766 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.7	(6.5)	-	Mod. Alk	aline				-	
144	(-)	umho/cm	None			Cl			Fertilizer Recommended
19	(-)	ppm**			Ш				0.5 lbs N/1000sqft
274	(50)	ppm	11111111111					Ш	0 lbs P2O5/1000sqft
408	(175)	ppm						l	0 lbs K20/1000sqft
7,269	(180)	ppm							0 lbs Ca/1000sqft
791	(50)	ppm						II	0 lbs Mg/1000sgft
82	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
82	(-)	ppm		IIIIIII					
						l I			
							,		0.00 lbs/1000sqft
	7.7 144 19 274 408 7,269 791 82	Results CL* 7.7 (6.5) 144 (-) 19 (-) 274 (50) 408 (175) 7,269 (180) 791 (50) 82 (13)	Results CL* Units 7.7 (6.5) - 144 (-) umho/cm 19 (-) ppm** 274 (50) ppm 408 (175) ppm 7,269 (180) ppm 791 (50) ppm 82 (13) ppm	Results CL* Units ExLow 7.7 (6.5) - Mod. Alf 144 (-) umho/cm None 19 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.7 (6.5) - Mod. Alkaline 144 (-) umho/cm None 19 (-) ppm**	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High 7.7 (6.5) - Mod. Alkaline -<	Results CL* Units ExLow VLow Low Mod High VHigh

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627166 Customer Sample ID: 1767 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. All	caline					
Conductivity	87	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	133	(50)	ppm)	II	0 lbs P2O5/1000sqft
Potassium	408	(175)	ppm)11111111111	l	0 lbs K20/1000sqft
Calcium	5,622	(180)	ppm					(1111		0 lbs Ca/1000sqft
/lagnesium	279	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	61	(13)	ppm	11111111111				111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	9	(-)	ppm	I						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627167
Customer Sample ID: 1768
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	101	(-)	umho/cm	None			С			Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	27	(50)	ppm							1.8 lbs P2O5/1000sqft
Potassium	346	(175)	ppm			1111111111)1111111111		0 lbs K20/1000sqft
Calcium	15,414	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	298	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	143	(13)	ppm					111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	III						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627168
Customer Sample ID: 1769
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	93	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	49	(50)	ppm				11111111111	İ		0 lbs P2O5/1000sqft
Potassium	192	(175)	ppm				11111111111)		0 lbs K20/1000sqft
Calcium	7,105	(180)	ppm				111111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
/lagnesium	241	(50)	ppm				111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	71	(13)	ppm				11111111111	11111111111	Ш	0 lbs S/1000sqft
Sodium	21	(-)	ppm	IIII						
ron										
Zinc								l I		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627117 Customer Sample ID: 1770 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	122	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	20	(50)	ppm							2.4 lbs P2O5/1000sqft
Potassium	235	(175)	ppm					וון		0 lbs K20/1000sqft
Calcium	7,997	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	455	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	77	(13)	ppm					111111111111111111111111111111111111111	Ш	0 lbs S/1000sqft
Sodium	41	(-)	ppm	IIIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627118
Customer Sample ID: 1771
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	86	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	9	(50)	ppm		111111111					3.2 lbs P2O5/1000sqft
Potassium	250	(175)	ppm		ШШШ			וווון		0 lbs K20/1000sqft
Calcium	12,016	(180)	ppm		111111111111			(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	236	(50)	ppm		111111111111			11111		0 lbs Mg/1000sgft
Sulfur	105	(13)	ppm		11111111111			111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	28	(-)	ppm	111111						
ron										
Zinc										
V anganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627119
Customer Sample ID: 1772
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	108	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	44	(50)	ppm	11111111111						0.4 lbs P2O5/1000sqft
Potassium	329	(175)	ppm	11111111111				וווווון		0 lbs K20/1000sqft
Calcium	9,285	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	402	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	86	(13)	ppm					111111111111	IIII	0 lbs S/1000sqft
Sodium	48	(-)	ppm	1111111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627120
Customer Sample ID: 1773
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	kaline					
Conductivity	101	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	205	(50)	ppm	11111111111			11111111111	,,,,,,,,,,,,	Ш	0 lbs P2O5/1000sqft
Potassium	266	(175)	ppm	11111111111			11111111111	IIII		0 lbs K20/1000sqft
Calcium	10,995	(180)	ppm	11111111111			11111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	412	(50)	ppm				111111111111		l	0 lbs Mg/1000sgft
Sulfur	115	(13)	ppm	11111111111			11111111111	ווווווווווו	1111111	0 lbs S/1000sqft
Sodium	24	(-)	ppm	Ш						
lron										
Zinc								l i		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w		re I .		Para Street	. NI	P		\		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 627121 Customer Sample ID: 1774 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	82	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	105	(50)	ppm)	I	0 lbs P2O5/1000sqft
Potassium	396	(175)	ppm)1111111111		0 lbs K20/1000sqft
Calcium	6,827	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	489	(50)	ppm		111111111111		111111111111			0 lbs Mg/1000sgft
Sulfur	70	(13)	ppm	11111111111)111111111 <u>(</u>	I	0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
-										·
*CL -Critical lovel is the point w	ام مع طمنطی	رم اممما النا	striant (avalu	dina nitrat	la N. aa	رم معربالم				

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627122 Customer Sample ID: 1775 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	114	(-)	umho/cm	None			Cl	•		Fertilizer Recommended
Nitrate-N	34	(-)	ppm**			1111111111	11111			0 lbs N/1000sqft
Phosphorus	92	(50)	ppm				11111111111	111111111111	l	0 lbs P2O5/1000sqft
Potassium	315	(175)	ppm			1111111111		1111111		0 lbs K20/1000sqft
Calcium	4,993	(180)	ppm				111111111111	11111		0 lbs Ca/1000sqft
Magnesium	168	(50)	ppm				111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	51	(13)	ppm	11111111111		1111111111	11111111111		I	0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
lron										
Zinc										
Manganese										
Copper							ľ			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627123 Customer Sample ID: 1776 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G. Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	8.3	(6.5)	-	Mod. Alk	aline					
Conductivity	104	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	50	(50)	ppm	11111111111	11111111111)		0 lbs P2O5/1000sqft
Potassium	261	(175)	ppm	11111111111				IIIII		0 lbs K20/1000sqft
Calcium	13,672	(180)	ppm	111111111111			111111111111111111111111111111111111111	(11111111111	II	0 lbs Ca/1000sqft
Magnesium	393	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	128	(13)	ppm	11111111111					111111111	0 lbs S/1000sqft
Sodium	54	(-)	ppm							
ron										
Zinc										
Manganese							ı			
Copper							ľ			
Boron							ŀ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627124 Customer Sample ID: 1777 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	109	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**)II			0 lbs N/1000sqft
Phosphorus	98	(50)	ppm					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l	0 lbs P2O5/1000sqft
Potassium	374	(175)	ppm					וווווווווון		0 lbs K20/1000sqft
Calcium	17,092	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	314	(50)	ppm					1111111		0 lbs Mg/1000sgft
Sulfur	155	(13)	ppm					,,,,,,,,,,,,		0 lbs S/1000sqft
Sodium	24	(-)	ppm	Ш						
Iron								! !		
Zinc								l I		
Manganese										
Copper										
Boron								l I		
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627125 Customer Sample ID: 1778 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	67	(-)	umho/cm	None			CI	•		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	49	(50)	ppm		111111111111		111111111111	l		0.1 lbs P2O5/1000sqft
Potassium	140	(175)	ppm		111111111111		1111111	 		0.8 lbs K20/1000sqft
Calcium	9,058	(180)	ppm		111111111111		111111111111		II	0 lbs Ca/1000sqft
/lagnesium	282	(50)	ppm		111111111111		111111111111	111111		0 lbs Mg/1000sgft
Sulfur	88	(13)	ppm	11111111111	11111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ш	0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper							ľ			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627126 Customer Sample ID: 1779 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	190	(-)	umho/cm	None			CI	_•		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	102	(50)	ppm	11111111111				111111111111	II	0 lbs P2O5/1000sqft
Potassium	464	(175)	ppm	11111111111)11111111111111111111111111111111111111	I	0 lbs K20/1000sqft
Calcium	12,950	(180)	ppm	11111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	484	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	198	(13)	ppm	11111111111				111111111111111111111111111111111111111		0 lbs S/1000sqft
Sodium	91	(-)	ppm							
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement				·						0.00 lbs/1000sqft
CL -Critical layed is the point w		Per I .		12 24 4				41 14 N		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 627127 Customer Sample ID: 2000 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2023 Printed on: 3/22/2023 Area Represented: 13068 sqft

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	187	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	24	(-)	ppm**	11111111111		IIIIIIII				0.3 lbs N/1000sqft
Phosphorus	162	(50)	ppm	111111111111					Ш	0 lbs P2O5/1000sqft
Potassium	498	(175)	ppm	11111111111				111111111111111111111111111111111111111	l	0 lbs K20/1000sqft
Calcium	6,378	(180)	ppm	111111111111	:					0 lbs Ca/1000sqft
Magnesium	614	(50)	ppm				111111111111		II	0 lbs Mg/1000sgft
Sulfur	77	(13)	ppm	11111111111				11111111111	Ш	0 lbs S/1000sqft
Sodium	72	(-)	ppm		Ш					
ron										
Zinc .										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
•										
CL =Critical level is the point w	المحاجب والمناوا	liti a mad m		-lin it t	- NI	ali aa . a .		4		***************************************

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.